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Polynomials

What is a Polynomial?

A polynomial is a mathematical expression that consists only of variables of whole-number exponents,

whose coefficients are any real number. A polynomial expression only has addition, subtraction or

multiplication between each term with a variable; a polynomial will never have division by its variable.

An example of a polynomial is

The coefficient of a term in a polynomial is the constant number multiplying the variable. Here, the

coefficient 8 multiplies with the variable x, which has an exponent of 2. Each term in a polynomial

is separated by a plus or minus sign. In this example, the ‘+’ sign separates the first term from

the second term, giving us two total terms. Lastly, we say that the degree of a polynomial is the

value of the variable’s largest exponent in all of the polynomial’s terms. Since the only term with a

variable in the example above is 8x2, the degree of the polynomial is the exponent of x2, which is 2.

Example 1

State the degree and number of terms in the polynomial x8 − 3x5 + x4 + 6.

Solution:

There are a total of 4 terms separated by a plus or minus sign. The degree is the largest value

of exponent on our variable, x, which is 8. So the polynomial has 4 terms with degree 8.
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Combining Terms

To combine the terms of a polynomial, we add and subtract like-terms. Like-terms are terms that

have a common variable degree. For example, the terms 16x3 and −9x3 are like-terms since they

both have a degree of 3. To add them, we simply add their coefficients to write 16x3 − 9x3 = 7x3.

Similarly, the terms 55 and 12 are like-terms since they are both constants (degree 0). Adding them

is nothing special since 55 + 12 = 67, but they are nonetheless like-terms. We can now say that the

entire expression 16x3 − 9x3 + 55 + 12 is equivalent to 7x3 + 67.

Exercise 1

Simplify the polynomial below by combining like-terms.

−2x6 + 10x2 + 1− 13x2 − 3

Note: If we’re dealing with polynomials of many terms, it is often helpful to order the terms from

greatest degree to lowest. This way we can more easily identify like-terms and simplify the expression

quicker.

Stop and Think

How can we use polynomials to solve real-world problems? Will we ever be able to graph or

solve equations with polynomials?

Polynomial Functions

Recall that a function can be thought of as a machine that takes an input x and spits out an output

y. The value of y depends on what the function is. If the function is y = 3x− 5, plugging in x = 2

will spit out a function value of y = 3x − 5 = 3(2) − 5 = 6 − 5 = 1. A polynomial function is just

a function whose output value comes from a polynomial. Since 3x− 5 is a polynomial, the function

y = 3x − 5 above is considered a polynomial function. It is shown below in Figure 1. Another

example is the degree-two polynomial function y = x2 − x + 2 (Figure 2). Finally, a third degree

polynomial function could be y = −x3 + 4x2 + 2x− 1 (Figure 3).
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Figure 1: y = 3x− 5 Figure 2: y = x2 − x+ 2 Figure 3: y = −x3+4x2+2x−1

Analysing Degree

We see that the 1st-degree polynomial’s graph has 0 turns, the 2nd-degree polynomial’s graph has 1

turn, and the 3rd-degree polynomial’s graph has 2 turns. You may notice a pattern here. It seems

that every time we increase the degree of a polynomial, we increase the number of possible turns

that its graph has. This observation is true! If our polynomial has degree n, the maximum number

of turns it can have is n − 1. It may have less than n − 1 turns, however it can never have more.

Once we learn something called ‘calculus’, we can actually prove this.

Exercise 2

Experiment graphing different polynomial functions using Desmos. Count the number of turns

for each graph, and try to convince yourself that this number will always be less than the degree

n. Specifically, the number of turns will always be between 0 and n − 1. Can you find a

polynomial function of degree n with less than n− 1 turns?

There are many ways we can categorize polynomial functions without doing any calculations. First,

we can look closer at its degree. An even-degree polynomial is a polynomial whose degree is an even

number. For example, the function y = x4 − x+17 has degree 4, therefore since 4 is even, its degree

is even. Similarly, if a polynomial function has an odd degree like 1, 3 or 5, it is considered an

odd-degree polynomial.
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Example 2

Determine if the function below is odd or even-degree, then comment on the number of turns

its graph has.

y = 5x7 + x4 − 8x3 + x+ 19

Solution:

The term with the largest degree is 5x7, which has an exponent of 7. Therefore, the polynomial

has a degree of 7. 7 is an odd number, which means the polynomial is odd-degree. Further,

we predict that the graph of this polynomial function has n− 1 = 7− 1 = 6 turns, although it

could potentially have less. We can find out by graphing.

Dominant Term

The dominant term of a polynomial is the term with the highest degree. The degree of the

dominant term determines the degree and ‘end behaviour’ of the entire polynomial.

End Behaviour

The end-behaviour of a function is the value it approaches as we make x either largely negative

(x → −∞) or largely positive (x → +∞). We see in Figure 2 above (an even-degree function)

that the function’s value gets larger as we move to the left or the right. This is because as the

value of x becomes largely positive (like 100, 000) or largely negative (like −100, 000), the value of

the ‘dominant’ term, x2, gets extremely large (towards infinity). Although the entire function is

y = x2 − x + 2, the value of −x + 2 is substantially smaller than the dominant x2 term when x is

sufficiently positive or negative. This means it can essentially be ignored when considering large-scale

behaviour of the function.

The end behaviour of a polynomial function only depends on its dominant term!

When analysing end behaviour, we do not care about the function’s shape when x is between −∞
and +∞. We only need to look at the dominant term; in particular, we care about its coefficient, and

whether its degree is odd or even. The chart below will aid us in determining a polynomial function’s

end behaviour based on such information.
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Dominant Term

Even Exponent

Positive Coefficient

x → −∞

y → +∞

x → +∞

y → +∞

Negative Coefficient

x → −∞

y → −∞

x → +∞

y → −∞

Odd Exponent

Positive Coefficient

x → −∞

y → −∞

x → +∞

y → +∞

Negative Coefficient

x → −∞

y → +∞

x → +∞

y → −∞

Example 3

Consider the polynomial function

y = 2x3 − x2 + 6x− 1

(a) What is the dominant term of the polynomial? Is it even or odd-degree?

(b) What is its end behaviour?

Solution:

(a) The dominant term is 2x3, so the degree of the polynomial is 3. The degree, 3, is an odd

number, therefore the polynomial is odd-degree.

(b) The dominant term 2x3 has a positive coefficient (+2), and the polynomial is odd-degree.

Referring back to our chart above, we see that an odd-degree polynomial with a positive

coefficient on its dominant term has end behaviour y → −∞ as x → −∞, and y → ∞ as

x → ∞. This is because as x gets very negative, 2x3 also becomes very negative. Similarly,

when x gets large, 2x3 gets large.

Exercise 3

How are the graphs of the functions y = −7x4 + 2x − 5 and y = −x6 − 5x3 − 8x + 6 similar?

How are they different? Explain by comparing the degree, shape, and end behaviour.
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Roots of a Polynomial Function

The root of a function is the value of x that pro-

duces a function value of 0: its x-intercept. For

example, in the graph of y = 1
2
x3 − 5

2
x2 + x + 4

to the right, the function has a height of 0 when

x = −1, x = 2 and x = 4. Therefore, the roots of

the function are x = −1, 2, 4. If we plugged in any

of these values of x into the function, we would get

an output of 0. There are many interesting ways

to find the roots of polynomial functions, but this

may be impossible to do without a computer. For

now, we will stick to simpler functions that can be

solved using algebra.

The main way we solve for the roots of a function are to set the output y equal to zero and solve for

x using algebra. For 1st degree (linear) and 2nd degree (quadratic) polynomials, this can be done by

hand. For higher-degree functions, we may need to write a program to find the roots for us.

Example 4

Find and verify the root(s) of the function y = 18x+ 3, then explain what x represents.

Solution:

To find the roots of any function, we set its output y equal to 0 then solve for x using algebra.

y = 18x+ 3 =⇒ 0 = 18x+ 3

0− 3 = 18x+ �3− �3

−3

18
=

��18x

��18
=⇒ x =

−3

18
=

−1

6

This tells us that the only time the function crosses the x-axis is when x = −1
6
. To verify, we

plug x = −1
6
into the equation and make sure it gives us 0. It does!

y = 18x+ 3 = 18 · −1

6
+ 3 = −18

6
+ 3 = −3 + 3 = 0
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Exercise 4

Solve for the roots of the function y = x2 − 25.

The Quadratic Formula

It may be obvious that it’s not always easy to solve for roots of a polynomial function. For example,

what if we wanted the roots of the function y = x2+3x−40? After we set y = 0, we would be stuck.

Luckily, there is a tool we can use to let us find the roots of any 2nd-degree polynomial we want: the

quadratic formula. The formula is shown below for a general quadratic function y = ax2 + bx + c,

where a, b and c represent the constant coefficients of each term.

Note that we always must make one side of the equation equal to 0! For our example above where

y = x2+3x− 40, we set a = 1, b = 3 and c = −40. Plugging this into the quadratic formula gives us

x =
−b±

√
b2 − 4ac

2a
=

−(3)±
√

(3)2 − 4(1)(−40)

2(1)
=

−3±
√
169

2
=

−3± 13

2

Solving for each case, we get the two roots are x = −3+13
2

= 10
2
= 5 and x = −3−13

2
= −16

2
= −8.

Example 5

Find the roots of y = 2x2 − 5x+ 3 using the quadratic formula.

Solution:

We set a = 2, b = −5 and c = 3, then plug these values into the quadratic formula.

x =
−b±

√
b2 − 4ac

2a
=

−(−5)±
√

(−5)2 − 4(2)(3)

2(2)
=

5±
√
1

4
=

5± 1

4

So the first root of the function is x = 5+1
4

= 6
4
= 3

2
, while the second is 5−1

4
= 4

4
= 1.
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It is natural to wonder if this formula ever fails. Although its result is always true, it does not always

give us a real answer. In particular, if the number inside the square root (b2 − 4ac) is negative,

there will be no real solutions since the square root of any negative number is imaginary. We

call this number the discriminant ; it determines whether we have real or imaginary solutions. If the

discriminant is positive, there are two real roots of the function. If the discriminant is zero, there is

exactly one root. If the discriminant is negative, there are only imaginary roots of the function.

Exercise 5

Determine whether the function y = x2 + 1 has real or imaginary roots.

Visualizing Types of Roots

If a polynomial function y does not have any real roots, that means that there are no real solutions

to the equation y = 0. However, it can be easier to visualize this on a graph.

Recall that we can imagine the roots of

a function as the values of x that give

the function y a height of 0. In Exercise

3, we saw the function y = x2 + 1 had

no real roots. The graph of y = x2 + 1

on the left (top curve) shows that the

curve never reaches the x-axis. There-

fore, the function y = x2 + 1 never

has a value of 0. If we did not have

the quadratic formula, we could see by

plotting the graph of the function that

there are no x-intercepts. Conversely,

the bottom curve y = x2 − 1 has two

roots (x = ±1) while the middle func-

tion y = x2 has exactly one root at

x = 0.

Exercise 6

What is the discriminant of the polynomial function y = 2x2 − 4x+ 2? What does this tell us?
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Example 6

A baseball team is practicing for an upcoming game. When one of the players goes up to bat,

they hit the ball far into the outfield at t = 0. The ball has a height according to the function

h = −4.9t2+22.5t+0.4 for any time t. Find the time at which it hits the ground in the outfield.

Solution:

When the ball hits the ground, its height is zero, so 0 = −4.9t2 + 22.5t+ 0.4. We set a = −4.9,

b = 22.5 and c = 0.4. Now all we need to do is use the quadratic formula to find the time t.

t =
−b±

√
b2 − 4ac

2a
=

−22.5±
√

(22.5)2 − 4(−4.9)(0.4)

2(−4.9)
=

−22.5±
√
514.1

−9.8
=

−22.5± 22.7

−9.8

The first root of this equation is t1 = −22.5+22.7
−9.8

≃ −0.02 seconds, however the time it hits the

ground must be greater than 0, so we use the other solution: t2 =
−22.5−22.7

−9.8
≃ 4.61 seconds.

Intersecting Polynomials

Now that we have learned about the characteristics of individual polynomials, we are prepared to

solve where multiple polynomials intersect. If we have two functions y1 and y2, we can find where

they intersect by simply setting the two functions equal to each other.

Take the two polynomial functions on the right for

example. We have the linear function y = −x + 6

intersecting the quadratic function y = x2−8x+12.

They intersect at two coordinates: (1, 5) and (6, 0).

To solve, we set the right side of each equation

equal to the other and solve for x. Here, we set

y1 = y2 =⇒ −x+ 6 = x2 − 8x+ 12

Next, we make one side of the equation equal zero.

−�x+ �6 +�x− �6 = x2 − 8x+ 12 + x− 6

0 = x2 − 7x+ 6
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Now that one side of the quadratic equation is equal to zero, we’re ready to use the quadratic formula.

0 = x2 − 7x+ 6 =⇒ a = 1, b = −7, c = 6

Plugging these numbers into the quadratic formula we can find x.

x =
−b±

√
b2 − 4ac

2a
= ��−(��−7)±

√
(−7)2 − 4(1)(6)

2(1)
=

7±
√
25

2
=

7± 5

2

So our two solutions are x = 7+5
2

= 12
2
= 6 and x = 7−5

2
= 2

2
= 1. This result matches our graph! If

we wanted to verify that x2 − 7x+6 = 0 when x = 6 and x = 1, we simply plug in these values of x.

For x = 6 : x2 − 7x+ 6 = (6)2 − 7(6) + 6 = 36− 42 + 6 = 0

For x = 1 : x2 − 7x+ 6 = (1)2 − 7(1) + 6 = 1− 7 + 6 = 0

Since these values of x produce a function value of 0, then x = 6 and x = 1 are both roots of the

polynomial function y = x2 − 7x+ 6.

Note

When solving the quadratic formula, we set y equal to zero since we are looking for the values of

x that produce a value of y = 0 from the given function. However, when we solve the equation

−x+ 6 = x2 − 8x+ 12,

wemustmake one side equal to zero in order to use the quadratic formula. Leaving the equation

as it is will make it difficult to solve, but moving everything to one side so the other side equals

zero lets us use the quadratic formula.

Exercise 7

(a) Give an example of two linear (1st-degree) functions that do not intersect. Why do they

not intersect?

(b) Do the same for two quadratic (2nd-degree) functions. Explain your reasoning.
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Example 7

Determine when the polynomial function y = 2x2 − 3x− 5 has a height of −3.

Solution: The function y = 2x2 − 3x − 5 has a height of −3 when y = −3. Setting the two

right-hand sides equal to each other, we get 2x2 − 3x− 5 = −3. Adding 3 to both sides, we get

2x2 − 3x− 5 + 3 =��−3 + �3

2x2 − 3x− 2 = 0

We can now solve for x using the quadratic formula, where a = 2, b = −3 and c = −2. We find

the roots are

x =
−b±

√
b2 − 4ac

2a
=

−(−3)±
√

(−3)2 − 4(2)(−2)

2(2)
=

3±
√
9 + 16

4
=

3±
√
25

4
=

3± 5

4

We see there are two possible values of x when y = −3. Either x = 3+5
4

= 8
4
= 2, or x = 3−5

4
=

−2
4

= −1
2
.

Formulas for Higher Orders

Just like how there is a quadratic formula for 2nd-degree polynomials, there is a cubic formula for

3rd-degree polynomials. There is also a quartic formula (for 4th-degree), but it is much longer. The

cubic formula is shown below for one of three possible roots:

x =
3

√√√√(
bc

6a2
− d

2a
− b3

27a3

)
+

√(
bc

6a2
− d

2a
− b3

27a3

)2

+

(
c

3a
− b2

9a2

)3

+
3

√√√√(
bc

6a2
− d

2a
− b3

27a3

)
−

√(
bc

6a2
− d

2a
− b3

27a3

)2

+

(
c

3a
− b2

9a2

)3

− b

3a

Clearly, these equations quickly become tedious to solve. After the quadratic formula, it is much

easier to solve for the roots of a polynomial using a computer rather than a formula.
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